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It has been shown in a series of theoretical papers devoted to the 
study of stationary plasma states that stationary periodic solutiom of 
the self-consistent problem can exist [1-5].  

There are considerable mathematical difficulties involved in 
examining the stability of these solutions in view of the inhomo- 
geneity of the unperturbed state. The comparatively simple prob- 
lem of the oscillations of charge density in electron beams with 
variable velocity was considered in [6, 7]. It was found that in a 
specific region of frequencies the wave may be amplified along the 
direction of motion of the beam. 

A periodic plasma structure often arises in a bounded volume, 
and so it is of interest to determine whether the instability that 
arises is absolute or convective. It is with this in mind that the 
present paper solves the problem of the development of a perturba- 
tion in a nonuniform periodic electron beam. 

We shall consider the one-dimensional problem of the passage 
of an electron beam with a constant particle flux density j through 
a uniform background of ions. If friction is neglected the stationary 
state of the system is described by the equations 

j ~ n V ,  1]2nzV2 - -  eqD ~ 1 ] ~ m V ~ i  n -  eq)min, 

dZr ] d x  ~ = 4~xe ( n - N ) .  (1) 

Here n, V, e, m are the density, velocity, charge and mass of 
the electrons, respectively, N is the density of ions, ~ is the potential, 
Commencing the calculations at the point where the potential is a 
minimum and setting ~min = O, we seek a solution of Poisson's 
equation which satisfies the conditions 

9 (o) = o, 9 '  (o) = o.  (2) 

It may easily be seen that in infinite space the solution will be 

periodic for all values a -= NVmin/J except a = 1. 
Integrating Poisson's equation we obtain the following implicit 

form for the potential as a function of the coordinate: 

+ ~ l f 2  = ct *h are cos a - -  

a 7 v' v~ V ~  - - s  * - ~ J , 

l 4~te~J mVrn in  ~ eq) 
)~ ~ mgmin s e ~  2 ' ~ = so (3) 

Solving this equation for ~ in the limiting case of small ampli- 
tudes (1 - c~ << 1), we obtain 

, = 2 ( 1 - c 0 ( t  ~'/~z - eo~ ~ ) .  (4> 

We shall consider the stability of this periodic solution as re- 
gards small longitudinal disturbances. Small oscillations of the 
electron beam are described by the following system of equations: 

OV ~ e Oq~ 
0-7- + . ~  [Vo(x) V] - -  m Ox ' 

On 0 0 
-bY + "~z [Vo (z) n] + " ~  [no (z) V] = O, 

02~ 
.=  4rten . (5) 

Here V, n, ~0 are the perturbations, and Vo, no, ~0 are the 
unperturbed values of the velocity, density and potential. 

Our initial condition is obtained by specifying the perturbations 
for t  = 0 

V (z, 0) = Vi (z), n (x, 0) = ni (x). (6) 

We assume that the initial perturbations differ from zero in a 
finite region of space; then our boundary condition is given by the 
fact that there is no perturbation at infinity at the initial moment 

v ( + m ,  t ) = n C k ~ ,  t ) = 9 ( + c o ,  t ) = 0 .  (7) 

Multiplying equations (5), (7) by ~pt and integrating from 0 to 
*~ we obtain 

d e dq~ 
p v + ' ~ ( V o v )  m d x - - V i ( � 8 8  

d d d 2 0  
pp + ~ (Vop) + ~ (nov) ~ nl  (x), ~ = 4~tep. (8) 

Here v, @, p represent the Laplace transforms of V, q, n. 
We eliminate �9 and p from system (8) and look for u (x, p) in 

the form 

(.,  p) = ~ (z, p) v (x, p), 
:c 

(x, p) = ~ exp - -  p ,~ Vo (x') ]. (9) 
o 

As the result of transformations we obtain 

7 '  + r (z)v = r (z, p) ,  

4he'no (x) 
l (z) = ~ , ( i0 )  

t ( ~  i V dg~ ', . r (x, p) = kVo2 (x) "r (z ,  p)  n l  (z') dz" + pV1 + o W / 
- -co  

By Yl (x), yz (x) we denote the fundamental solutions of the 
homogeneous equation (10). We then obtain f6r v (x,p) 

t I dz" r I+. , )  K (=. ='/ , +  (11> 
0 --CO 

Here 
I/V = Ylg~' - -  g~gl' - -  const, 

K (x, x') = .g~ (x)Yi (z') - -  Yi (x)Ys (x'). 

Carrying out the inverse Laplace transformation and changing the 
order of integration, we find 

V (x,  t) - -  W V o  (x) L (~') 
--oo x" 

+ }' 
--r x" 

4ge2 i L ( x ' ) ~  nl  (x ' )dz"  + Vo dV i  (12) 
d x "  ' 

- -co  
and after integrating over x' 

t K d 

x' 

Since the initial disturbance differs from zero only in a finite 
region of space (Ixl < x0), there exists, as is clear from formula (la), 
a value of time t 1 for any fixed value x = x I such that Ix'l, x0 for 

t > t i and the velocity V(x, t) vanishes. For another point x = x z 
(x~ > xl) the corresponding moment of time t~ > t i. This means that 
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the perturbation drift is the direction of increasing x. Using formula 

(18), we may easily ascertain that the drift velocity is equal to the 
velocity of the unperturbed beam. 

The question as to whether the disturbance will increase or de- 
crease in this case is determined by the behavior of K(x, x') as a 
function of x'.  The increase of K (x, x'), for example, indicates 
that the beam is conver unstable. The solution obtained 
above loses its meaning if the wave breaks and multi -stream flow 
results. The condition necessary for the wave to break is dx/dV = 
= d2x/dV ~ = O. It may easily be shown that (see formula (18)) these 
requirements are not fulfilled for all sufficiently smooth initial values 

of n t and Vp 
There are considerable mathematical difficulties involved in 

carrying out an analytic investigation of the properties of the funda- 
mental solutions of equation (10), We thus confine ourselves to the 
case of small amplitudes when this equation reduces to Mathieu's 
equation 

d2--g-Y 4- 4 (t - -  3 (a - -  I )  cos 2z) y = 0, 

~e"/' t --  a . ~ l ) .  (14) 

It is a familiar fact [8] that this equation has one increasing 
solution. Using Whittaker's method [8], we seek the solution in the 
form y = e~Zq) (z, ~), where ~ and o are new parameters, and r is 
a periodic function. We obtain as a result 

y (z) ~ A1 exp 4 b  sin 2z 4- A2 exp - -  48 cos 2z, ,(15) 

(q = 6 (<~ - -  t ) ) .  (1 r~) 

(co>re 'd)  

It follows from formula (15) that the growth increment for small 
amplitudes is proportional to the square of the amplitude. 
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